Amine-Catalyzed Biomimetic Hydrolysis and Condensation of Organosilicate

نویسندگان

  • Katya M. Delak
  • Nita Sahai
چکیده

Biogenic silica production occurs at mild conditions with greater control of pore size, shape, and micropatterning than is possible with typical industrial sol-gel methods, providing inspiration for potential alternative routes to silica synthesis. Researchers have implicated the amine moieties, histidine and polylysine, on proteins isolated from sponges and diatoms as catalysts for biogenic silica precipitation. Different mechanistic roles have been ascribed to the amines, but few systematic, quantitative studies isolating one effect from another have been conducted. In the present study, we use 29Si NMR spectroscopy to systematically examine the different possible mechanistic roles of monoand polyamines in catalyzing silica synthesis at mildly acidic pH (∼5) from an organosilicate starting compound, trimethylethoxysilane (TMES). TMES has a single organosilicate bond, so there are no competing reactions and the reaction progress can be followed with little ambiguity. Hydrolysis and condensation (dimerization) of TMES lead to the products trimethylsilanol (TMSiOH) and hexamethyldisiloxane (HMD). The Refocused Insensitive Nuclei Enhanced by Polarization Transfer pulse sequence (RINEPT+) provides unambiguous, quantitative 29Si NMR spectra from which the hydrolysis and condensation rates in the presence of each amine can be obtained. For both monoand polyamines, the catalytic efficiency scales with the concentration of conjugate base form and inversely with pKa. Thus, catalysis is most efficient with more acidic monoamines, such as pyridine and imidazole, as well as for the longer polyamines, where the most acidic protonation constant is lower than the experimental pH (∼5). We postulate a nucleophilecatalyzed hydrolysis mechanism where the conjugate base of the amine attacks Si to form a pentacoordinate intermediate with TMES. Condensation is interpreted as an acid-catalyzed SN2 mechanism. Our findings potentially explain the evolutionary selection of histidine-containing proteins for biogenic silica synthesis by sponges and address the chemical mechanisms at work for the precipitation of silica by polylysinecontaining proteins in diatoms. Along with the physical mechanisms suggested by other research groups, the systematic results from the present study indicate that amines may be employed in more than one type of mechanistic strategy for catalyzing biogenic and biomimetic silica polymerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of amine-catalyzed organosilicate hydrolysis at circum-neutral pH.

Mono- and polyamines can catalyze the hydrolysis and condensation of organosilicate starting materials in biomimetic silica synthesis pathways at circum-neutral pHs and room temperature. Our study is focused on understanding the mechanistic role of amines in catalyzing the hydrolysis process that precedes condensation. We have conducted (29)Si NMR experimental studies over a range of temperatur...

متن کامل

Studies of a Tripodal Biomimetic Siderophore Analog: An Efficient Encapsulation for Fe(III) Ion

A new tris-(2-aminoethyl)amine (TREN) capped tripodal Schiff base ligand has been developed by mimicking structural features of a natural siderophore, Bacillibactin, by substituting the catechol units with salicylaldehyde and employing amino acid as spacer. Synthesis of the ligand N-[2-[bis[2-[[2-[(2-hydroxyphenyl)methylamino]acetyl] amino]ethyl]amino]ethyl]-2-[(2-hydroxyphenyl)methylamino]...

متن کامل

An Efficient Synthesis of Benzylamino Coumarin Derivatives via Three-component Coupling of 4-hydroxycoumarin, Aromatic Aldehyde and Cyclic Secondary Amine Catalyzed by CuO Nanoparticles

A green and efficient one-pot synthesis of benzylamino coumarin derivatives was conducted by a three-component condensation of 4-hydroxycoumarin, cyclic secondary amine, and aromatic aldehyde in the presence of CuO nanoparticles (NPs) as a heterogeneous catalyst in water at room temperature. 

متن کامل

Thermolysin-catalyzed peptide bond synthesis.

The rates of the thermolysin-catalyzed synthesis of peptides have been determined by means of HPLC. In the condensation of various N-substituted amino acids and peptides with L-leucinanilide, the enzyme exhibits preference for a hydrophobic L-amino acid as the donor of the carbonyl group of the newly formed bond. The presence of another hydrophobic amino acid residue adjacent to the carbonyl-gr...

متن کامل

Organocatalytic asymmetric biomimetic transamination of aromatic ketone to optically active amine.

An asymmetric biomimetic transamination of aromatic ketones to optically active amines with o-HOPhCH(2)NH(2) as amine source catalyzed by hydroquinine-derived chiral base is described. Up to 85% ee was obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005